Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus
نویسندگان
چکیده
The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states.
منابع مشابه
Proteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning
Morphine’s effects on learning and memory processes are well known to depend on synaptic plasticity in the hippocampus. Whereas the role of the hippocampus in morphine-induced amnesia and state-dependent learning is established, the biochemical and molecular mechanisms underlying these processes are poorly understood. The present study intended to investigate whether administration of morphine ...
متن کاملProteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning
Morphine’s effects on learning and memory processes are well known to depend on synaptic plasticity in the hippocampus. Whereas the role of the hippocampus in morphine-induced amnesia and state-dependent learning is established, the biochemical and molecular mechanisms underlying these processes are poorly understood. The present study intended to investigate whether administration of morphine ...
متن کاملThe effect of silymarin on prevention of hippocampus neuronal damage in rats with temporal lob epilepsy
Background and Objective: Temporal lobe epilepsy is hallmarked with neuronal degeneration in some areas of hippocampus and mossy fiber sprouting in dentate area. Considering some evidences on neuroprotective and antioxidant activity of silymarin (SM), this study was undertaken to evaluate the preventive effect of this agent on structural changes in hippocampus of kainate-epileptic rats. Materia...
متن کاملIn Vivo Ca Imaging Reveals that Decreased Dendritic Excitability Drives Startle Habituation
Graphical Abstract Highlights d GCaMP6s enables analysis of subcellular neuronal activity during startle behavior d Startle regulation occurs both up-and downstream of the Mauthner cell d Downstream inhibition does not play a role in short-term habituation d Short-term habituation is due to depression of Mauthner cell dendritic excitability In Brief The neuronal mechanisms that govern short-ter...
متن کاملTRPC6-mediated ERK1/2 Activation Regulates Neuronal Excitability via Subcellular Kv4.3 Localization in the Rat Hippocampus
Recently, we have reported that transient receptor potential channel-6 (TRPC6) plays an important role in the regulation of neuronal excitability and synchronization of spiking activity in the dentate granule cells (DGC). However, the underlying mechanisms of TRPC6 in these phenomena have been still unclear. In the present study, we investigated the role of TRPC6 in subcellular localization of ...
متن کامل